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in the neighbourhood of stable rotations. 
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ON THE NON-UNIQUENESS. OF NON-LINEAR WAVE SOLUTIONS 
IN A VISCOUS LAYER* 

A.V. BUNOV, E.A. DEMEKHIN, and V.YA. SHKADOV 

Solutions of the stationary travelling wave type are considered in draining 
layers of a viscous fluid. A one-parameter family of waves /l/ is studied 
that softly branches off into the upper branch of the neutral stability 
curve of the plane-parallel flow and goes over into a negative soliton 
(phase velocity c<3) as the wave number tends to zero. It is shown that 
this family is not unique: for small values of the parameter 6 character- 
izing the mass flow rate, a second and third family of waves branches off 
from it with half the period. The critical value a= 6, is found for 
which the bifurcation points of the second and third families merge, while 
for 6>b, they go into the complex plane; a dependence of the wave number 
on 6 for which the bifurcation occurs is obtained analytically. The 
properties of the second family of the periodic wave and positive soliton 

type, for which c>3 are studied. The solutions are constructed numer- 
ically: the periodicsolutions arecontinuedin the parameter from the 
bifurcation points or from the known solutions by using the method of 
invariant imbedding; the soliton solutions are constructed by joining the 
linear asymptotic forms as the values of the longitudinal coordinate tend 
to infinity. 

1. Steady wave motions of a viscous fluid in a plane layer on a vertical surface are 
described in the long-wave approximation by the equation /2, 3/ 

hsh" + 6 [6 (q - c)* - c*h*] h' + [hs - q - c (h - I)] = 0 (1.1) 
6 = 3-~'.5-'y'/'R'v' y = ~p-lv-'/rg-'/* 

Here h(r) is the layer thickness, g is the mean flow rate, c is the phase velocity refer- 
red to the mean flow rate velocity of the laminar waveless flow, D is the surface tension, R 
is Reynolds number calculated from the mean flow rate and the layer thickness corresponding 
to waveless flow, and + is the longitudinal coordinate. 

The conditions for periodic waves 

(1.2) 

and for solitary waves (solitons) 
h-t. h(")-0 as r-*tm (1.3) 

The trivial solution h(=)zl, q= 1 corresponds to a plane-parallel waveless flow-As iS 
shown in /2/, a selfoscillating wave solution branches off softly from the trivial solution 

at the point e0 = f/isa. The fundamental properties of these solutions are investigated in /2, 
4.i. 

Introducing the small parameter E, we obtain the following expansion in the semicircle 
a = CL0 
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As e -0 the expansion (1.4) tends to the exact solution. Formulas (1.4) can aLso be 
obtained from the solution in /2/ by an expansion in the amplitude E. 

TO continue the solution (1.4) in the parameter s= s/a,,, we use the method of invariant 
imbedding /5/. We introduce compression of the independent variable .X-C+ so that XE[O, 3rrl. 
The periodic solution is sought in the form 

h = $ hkcikxt b_r = z,, b--1, In (hl} = 0 (1.5) 
k=--N 

Substituting (1.5) into (1.1) and collecting terms for identical harmonics, we obtain a 
non-linear system of ZN+l equations in ZN+ 1 unknowns 9, c, hh(k = i,Z,...,.V). The quantities 
Q and i) are considered given. The number of harmonics was determined by the condition .V=(, 
antier (ala,); here 1 hN/ht I< 10+ in the majority of cases. 

We supplement the system by giving the curve a=a(h),& -a(h) in the parameter space, 
where ?. is a certain parameter. Differentiating the non-linear system with respect to 1, we 
obtain a system of 2Nfi ordinary differential equations. If the solution is given at a 
certain point of the curve, it can be continued by numerical integration on the whole curve 
a. = d (A), il -id(L) up to a singularity, the bifurcation point, say. We note that the deformation 
of the curve can successfully reduce system degeneration in a'number of cases, and the sin- 
gularitycanbebypassed.The method mentioned enabled us to find the solution in domains with 
abrupt changes in the desired functions from the parameters of the problem. 

The first family of wave solutions in the domain d E(s~,~),~E(O,~) was studied in detail 
by this method with the initial data (1.4). For b>t the solution does not actually differ 
from the asymptotic form as d-oo. The periodic solution is successfully continued to ~~0.1; 
the periodic wave differs slightly from a solitary wave for this value of s. For S= 0 the 
family is supplemented by a negative soliton. Since the phase velocity of a solitdn referred 
to the first family is c<3, then we agree to call it negative unlike the positive soliton 
for which c> 3. 

We will use the method in /4/ to find the soliton solution. Since h,= h--l-boas z-2 
00, after linearization (1.1) becomes 

hl”’ + poh,’ -+ (3 -c) h, = 0, w = 59 - 12~ + 6 (1.6) 
which has three linearly-independent solutions. It can be shown from an analysis of the 
characteristic polynomial (1.6) that for d<2.38 one of the soliton fronts corresponding to 
the two complex-conjugate roots of the polynomial Will Oscillate: forward for c>3 and back- 

ward for e < 3. 
For fixed 6 let the approximate value ~<3 be known. The roots of the characteristic 

polynomial are (i,= 2m<O, 4,s =--m fi& By virtue of the damping of the solutions as I- + m T 

we can take h=! + e, h’= 2em, h” = 4em2, E = 0.01 as initial conditions. Integrating (1.1) from 
these initial conditions to smaller z,, we arrive at a domain where the asymptotic form z-- 
m is valid (c is close to the eigenvalue), and therefore the solution has the form 

h z i + A@*- + BI-~ sin (6x C 9). 

(A,S,+ can be expressed in terms of h,h’,b”). If c is the eigenvalue, then the solution that 
grows as x-.-cu is suppressed, i.e., A(c) vanishes. It can be shown that for A to vanish 

it is necessary #at (ma+B3(h- 1)+2mh'+h"=O. During the computations we select c such that 
this condition will be satisfied. 

Fig.1 Fig.2 
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We proceed in an analogous manner for the positive soliton c>3 but we perform the 
numerical integration of (1.1) towards larger I. For c=3 the solitary wave does not exist: 
integrating (1.1) with respect to z for c= 3 we obtain the relationship 

T (h-l)“(h+2)h-adz-0 
-0D 

which is satisfied only for h(z)=i. 
To represent the results of specific computations for small 6,. we introduce the independ- 

ent variables AC, Q, H(X): 
d d 

c=3+c@Ac, q=l-t%'Q, h=i+c&‘, dt=uodX 

The capital letters refer to the stretched variables, and the lower-case letters to those 
not stretched. Then as 6-0, the (1.1) in stretched variables becomes the model equation 

/6, 7/ 
H"'+H'- Ad+ 3H'= Q (1.7) 

Curves of Ac,A = H+-H_ against s and 6 are shown in Figs.1 and 2 (on the left) for the 
first family. The numbers on the curves correspond to values of 13.10~. The dashed lines 
correspond to the value 6=0. 

As 8 increases the wave characteristics differ slightly for different 6. Adefinitedistinc- 
tion between the phase velocities, flow rates, and amplitudes, which also decreases as 6 
increases, is conserved only in the long-wave part. For 6=1 the solution at s> 0.25 is in 
good agreement with the asymptotic form 6= 00. 

As is seen from Figs.1 and 2, for small 6 there are two amplitude maxima: one larger in 
the optimal (6~0.8) regime domain /2/, and the other smaller for r-0.4. As b increases the 
small maximum vanishes, while the larger starts to shift toward I = 0. 

The evolution of the form of the first family is shown in Fig.3 for 610.04 as sdiminishes. 
As 6-w, the wave shape becomes symmetric, and the oscillations characteristic for small s 
drop into a trough. For small s, large 6 correspond to the build-up of the symmetric shape. 

We give below the parameters of the negative solitons: the phase velocity c and the 
amplitude a= h+-h_ (the plus and minus subscripts denote the greatest and least values of 
the quantities) 

6 0.01 8.;; 0.06 0.1 0.2 0.4 1.0 
c 2.93 
a 0.036 0:149 ;:g5 :i:6 ;:t:9 $% I$ 

These results agree with the results in /4/ for the values of the phase velocity. 

2. Selfoscillating solutions of the first family with periods n, 2x/3,.. ., Pain, . . . , 
respectively branch off from the trivial solution from the points .v=V,.V,, . . . . i/n, . . ..In part- 
icular, the solution obtained from (1.4) by the substitution +- 22 emerges from I = =I, 

' (i 
e*fP 

S=T -et). h=1+2e~sin2r-~sin4r+~C~~e~~~ (2.1) 

Let us consider the x-periodic solution (2.1) as a degenerating %x-periodic solution with 
zero odd harmonics. In principle, a selfoscillatory solution with non-zero odd harmonics can 
branch off from the degenerating solution. We impose a perturbation h-.h+Mf,q-q+N,c-c+ 
P6C on the solution of the first family. After substitution into (1.1) and passage to the 
limit, we obtain the equation 

Aj”‘+Bj’+Dj+Ru+G&=O 
A=aah=, B= a6 [S (q - c)’ + c’h’] 
D = 3aahahm - 2aSPhh’ + 3h* - e 
R = 12~~6 (q - c)h’ - f 
G = -2a6h’ (6 (q - c) + c*hz] + i - h 

The existence of Zn-periodic non-trivial solutions of the following linear problem with 
n-periodic coefficients 

Aj"' + Ej' + Dj = 0 (2.2) 
j (0) = f wo, 1’ (0) = 1’ cw, f” Pa= f” w 

is the bifurcation condition. 
We assume that the branching occurs in a small but finite neighbourhood of I='/~ so that 

the solution (2.1) can be used. We seek f in the form 

f = f; (F, sin kz + cDk cos k-z) 
k-1 

Substituting the expression for f into (2.2) and rewriting the coefficients A, B, Dusing 
(2.1), we obtain a system of linear eighth-order algebraic equations in Fk.@& with zero right 
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side. Therefore, the branching condition is the degeneracy of the principal eighth-order 
matrix which will not be written down because of its awkwardness. Furthermore, it can be 
shown that the even and odd Fk,rDk enter the equation independently, and it is sufficient to 
take a fourth-order matrix generated by the odd harmonics sin I, coax, sin 3z, ~033~ for the branch- 
ing condition. After evaluation of the determinant of the matrix mentioned, and neglecting 
terms of order greater than Ed? which is equivalent to conserving terms of.order E$ in (2.1' 
we obtain the final form of the branching condition 

a@ f be' + 1 = 0 
D = 134.94 (23,05 + 27,6af f a,'")(% j-4.14 a$)-2 
b=-20,79(12,7ii+~~)(t+4,14~*)-', css,=j/%!i 

(2.3) 

The dependence G=.@(d) is given below 

6.102 0 2 4 6 8 10 12 
Ff.103 4,2 4,7 6.83 17 33 60 99 
F;.toz 7,6 8,6 11 16 20 22 22 

Note that the assumption 
discussion is satisfied. For 
for &~i(0,8.) two more branch 
merge into one. 

We later limit ourselves 

Fig.3 Fig.4 Fig.5 

about the smallness of e2 introduced at the beginning of the 
6>6,= 0.138 there are no real solutions of (2.3); therefore, 
off from the first family, while for 8>8, these last families 

to the smaller root. 

We agree to call the family that branches off here the second family. The neighbourhood 
of the bifurcation point is given in Figs.1 and 2. The first family emerges from the point 
s=Vn at twice the frequency, and the second branches off from this family. The dependence 
of hc,A=H,- H_ on s and 3 is shown in Figs.1 and 2 (on the right) for the second family. 
As is seen from the graphs, the normalized wave number s first starts to increase as one moves 
away from the bifurcation point, and then diminishes after passing through the maximum (s = 
(0.53. 0.58) for the 8 considered) . As s-0 the second family can become, in particular, a 
positive soliton. The second family of waves was observed in experiment /8, 9,'. 

The evolution of the shape of the family is displayed in Fig.4 for removal from the bi- 
furcation point and the gradual passage to a positive soliton for 8==0.041-Ac==i.5~tO-J, 
2 -0.363, 9 -0*7fl, 4 - 1.059, 5 - 1.41; here the dependence on the velocity Ac=(c-3)/ao3 is taken 
because of the ambiguous dependence on s. In a small neighbourhood of the bifurcation point 

c<3, mainly for the second family c>3. For 8= 0 (the dashed line in Fig.1) and 3>0.58 
there is one branch Ac=O; for s<O.58 there are three branches emerging from the branch 
point: Ac=O,c>3,~<3. (Two such branches are found in /lo/ for this case.) 

The branch de=0 reaches the point ~-0.4979, which agrees with the value obtained by 
numerical continuation of the family from S= i in ill_/. For 6-O the bifurcation is not 
the bifurcation of a common position and it holds because of the high symmetry of (1.6); for 
small movements of the parameter 8 the bifurcation dissociates (/l.Z, p.120) and we then have 
two first and second family branches. As d increases, the asymmetry of the families grows, 
it.is most strongly apparent in the soliton solutions (see Fig.5, positive solitons: 1--6= 
0.02, 2 -0.03, .9 - 0.0392). For &=0.0392 the amplitude of the positive soliton is five times 
greater, say, than the amplitude of the negative sofiton. The dependence of the phase velo- 
cityandamplitude is presented below 

& 0.01 0.02 0.03 
C 3.076 3.26 3.65 

~.$5 :.;;92 

a 0.041 0.136 0.336 0:563 0:976 
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The papers /lo, 13/ are devoted to an investigation of soliton solutions for the model 
equation, and the paper /14/ is devoted to non-stationary solutions of solitary wave type. 

The authors are grateful to V.I. Arnol'd and A.A. Nepomnyashchiiforuseful fiscussions. 
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INFLUENCE OF NARROW CYLINDRICAL CAVITIES ON THE WAVE FIELD EXCITED BY A 
CONCENTRATED FORCE IN AN ELASTIC SPACE* 

T.V. SUVOROVA 

An elasticity theory problem is considered concerning the excitation of a 
wave field in a space weakened by a system of cylindircal cavities of small 
radius with rigid walls, with a concentrated force applied to a certain 
point of the space outside the shafts and varying sinusoidally. The 
solution of this problem is constructed by the principle of superposing 
the solutions of the following problems: the non-axisymmetric vibrations 
of an elastic space subjected to an oscillating concentrated force (problem 
1); the wave field that occurs in an elastic space perforated by a system 
of narrow cavities vibrating under the effect of a sinusoidally varying 
stress applied to their walls (problem 2). 

We also apply the method elucidated below to the investigation of the 
displacement field in an elastic space equipped with a system of elastic 
cylindrical inclusions of small diameter, or a system of cavities filled 
with liquid or a viscoelastic medium. 

1. We consider problem 1. We obtain formulas describing the wave field in a space ex- 
cited by a concentrated force Xe-'O!(X= (X,,X,,X,), o is the vibration frequency) applied to a 
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